
N87-23165

RATIONALIZING VICAR WITHIN A TAE FRAMEWORK-SOME PROBLEMS
AND SOME SOLUTIONS

Colin P. Harris

Atmospheric Physics Group
Imperial College of Science and Technology

London SW7 2BZ

PRECEDING PAG_ BLANK NOT FILMED

169

Abstract.

TAE implementation may impose a strain on centres with modest

resources. This may be eased in a number of ways. The balance of a

small number of expert users and a large number of computing novices

at IPIPS imposes special constraints. Some solutions to these and

other particular problems are described.

I. Introduction.

In many environments where complex applications software is used,

implementation of a new system may inconvenience users and systems

staff alike. Where there is no shortage of staff or time, a

TAE-based system may be fully constructed and tested before being

released to users. During this period, however, any contruction

which reduces the strain of transition for both staff and users is

clearly desirable. During the implementation of TAE on the IPIPS

image processing system at Imperial College a number of such

constructions were learnt. In addition, the selected TAE

configuration had to encompass the particular needs of two user

groups, and to complement the existing hardware and software.

2. The IPIPS system.

a. The target community.

As described by Grove (1985), the IPIPS system has two

complementary user communities. Around one third of the users are

researchers with varying amounts of experience who need access to

the image processing subroutines in order to produce their own

specialised software. The majority of the rest are masters degree

students in remote sensing, around 25 in all, with little or no

computing experience. Finally, there are visitors and external

users, using the IPIPS system as a facility for their own work.

People in this group need an intermediate level of

user-frlendllness. They may have quite complex needs, and may be

very experienced on other systems, but wlll need guidance to find

170

the appropriate programs from the large libraries available.

The interests of the IPIPS users are wide-ranging. The original

system was developed for terrestrial meteorology and Voyager image

analysis, but subsequent involvement with the Centre for Remote

Sensing at Imperial College has taken it into many more areas.

These include Earth resources, ocean colour, pattern recognition and

texture analysis, among others.

b. The hardware configuration.

The core of the IPIPS system (Hunt et al. 1985) is a DEC VAX

11/780 general purpose computer, with storage consisting of two 1600

bpl tape drives and four user accessable disks in addition to the

system disk. Output devices include printer, plotter and video and

photographic facilities. In addition there are two I2S dedicated

image processing systems. These consist of user interface

(trackball or tablet), colour monitor, and a processing unit coupled

to a set of refresh memories, each of which may contain a 512x512x8

bit image. The Model 70E has 6 such channels whilst the newer Model

75 I2S has 15. Each I2S is capable of rapid and complex

manipulation of single frames or sequences of images, in black and

white or colour. The processing unit permits operations such as

image convolution to be carried out in hardware, independently of

the VAX. The I2S system is particularly suited to applications in

Earth resources and meteorology. For a fuller description of the

12S capabilities see Adams and Driacoll (1979).

c. The software configuration.

The software available on the IPIPS system before the

implementation of TAE was based around the VICAR system for image

processing and parameterlng. This was originally transported _roa

the JPL IBM in the late 1970s (see Castleman 1979 for a description

of the VICAR system). A transportable VAX version was subsequently

developed by IPIPS (Lawden and Pearce 1980). This was complemented

by a database system (G-EXEC), by CORE graphics, and by the osllne

image _anipulatlon facilities provided by the I2S. The greatest

171

single problem was the partial incompatibility of these systems,

particularly in their different parameter retrieval routines.

3. Implementing TAE.

The target system to replace the existing software consisted of a

division of the VICAR labour between TAE (handling parameterlng) and

BISHOP (a superset of VICAR consisting of a selection of the

image-processlng subroutines and utilities) (Grove 1985). In

addition the parameterlng routines associated with the other parts

of the system were to be hidden beneath a TAE interface, enabling a

common mode of user access to all parts of the system. In

developing this system a major problem became apparent in that IPIPS

simply did not have the manpower to fully convert large parts of the

system to TAE in a short space of time. In the interim the less

experienced users were having to cope with software wherein some

programs were available only under the old arrangement and others

only under the new. This is a problem that may potentially affect

any system with limited resources.

To escape this problem a two stage implementation philosophy was

used. The source of the Vicar programs was initially left

untouched, but TAE was used on top of this to enable users to take

advantage of the associated menus, tutor modes and second level

help. This was done by generating a DCL VICAR command line within a

TAE Procedure from concatenated parameter names and values. This

command line was then used to run the program. Listing 1 provides

an illustration of this.

This strategy proved extremely successful in smoothing the

transition to TAE. The pressure on the systems staff to make the

change as rapidly as possible was lifted as large numbers of

programs could be made available to users in a relatively short

period of time. The staff could then replace the temporary

Procedures with Process PDFs and upgrade the Fortran source code

from VICAR to BISHOP in their own time, and in a way that was

invisible to the users. This process is still continuing.

172

4. a. Further enhancements.

In addition to this interim application, this method led to the

implementation of many DCL commands (such as Link, Run etc.) within

TAE. Again this was done through Procedures. This was found to

have two advantages. Firstly, the user did not have to go through

the sequence of commands DCL - <command> - TAE every time he wished

to use a sequence of VMS commands. More importantly, only selected

parameter qualifiers were made available in TAE. In the Link

command, for instance, only /MAP, /DEBUG and /CROSS were used. This

guided novice users who may have been lost within the extensive VMS

help towards the parameters most likely to help them. See listing 2

for an example.

In addition to the general upheaval, the transition to TAE

created some particular problems, and opportunities to remedy some

old difficulties. The most ambitious development was a

model-independent I2S driver. Applications programs llnk to a dummy

shareable image at link time and to the appropriate (Model 70 or

Model 75) real shareable image at run time. A TAE procedure selects

the correct image by setting an appropriate global symbol that acts

as a pointer. The shareable images associated with each I2S contain

subroutines with the same name and parameter list, so that a program

calling just these model-independent routines will work equally well

on either 12S. The 12S primitive subroutines are different for the

two models, and previously a user would have had to write a

different program for each 12S. These differences are now hidden

from the user. In principle a complete graphics system may be built

in this way, with a set of shareable images corresponding to the

output devices. This has a number of advantages. Firstly, there is

a considerable saving in space since the executable images no longer

contain the code to drive all the devices. Secondly, upgrades to

indlvidual devices' code may be made without rebuilding the whole

system. Finally, new output devices may be added slmply by adding

new shareable images to the set, without disturbing the existing

code. The CORE system might particularly lend itself to this

architecture on the VAX, and IPIPS might consider this development

at a later stage.

173

The implementation of TAE enabled simple menus to be constructed

as another major development. Even the most experienced users were

unfamiliar with all of the 150 plus applications programs available

at IPIPS. Helping new and external users to find the programs they

needed had long been a problem, and TAE menu trees arranged by

application has made a great difference in this area.

In another area, TAE tutor mode has had an unexpectedly

beneficial effect. VICAR programs may frequently have 10 or more

optional parameters, and occasionally as many as I00. The

well-known dislike of ploughing through many pages of hardcopy had

always meant that users rarely used the more obscure parameters,

although these were often very useful. Tutor mode has greatly

increased user awareness of the system's capabilities, and this has

in turn made for a more productive usage.

b. An outstanding problem.

The dual upgrade to Version 4.1 VMS and Version 1.3 TAE has

induced one problem. Version 4.1 has been observed on many machines

to run more slowly than earlier versions. This problem is made

worse by the extra processes created by TAE. The observed

additional overhead in response time for a given program varies

between 5 % and as much as 25 %. The larger values are associated

with programs involving user I0, whilst programs that involve mainly

calculation are virtually unaffected.

5. Conclusions.

In summary, the TAE system is now essentially fully implemented

as part of the IPIPS image processing system. This has been

accomplished with only limited resources but the minimum of user

disruption. The future development of such systems will surely

hinge around the concept of integration. It is essential that the

image handling, graphics and database parts of such complex systems

are assembled and presented to the users in a coherent fashion.

This is a path that systems such as IPIPS, MIPL at JPL, and the LAS

all seem to be following. Future systems such as the Galileo HIIPS

174

system will also need this coherence, and it is apparent that the

TAE F=ecutive is currently the best way to provide it.

Refs°

Adams J.R. and Driscoll E.C., "A low cost transportable image

processing system," Ist ASSPNKSHP ON 2-D DIG. SIG. PROC., 1979.

Castleman, K.R., "Digital image processing,"

Prentlce-Hall, 1979

Grove, L, "TAE and BISHOP in a Teaching Environment," Fifth TAE

Users Conference, Maryland (1985).

11unt G.E., Barrey R.F.T., Clark D.R., Easterbrook M., Gorley R.,

Marriage N., Muller J-P.A.L., Roff C.E. and Rumball D.,

"The Interactive Planetary Image-Processing System," IEEE Transactions

on Geosclence and Remote Sensing, Vol. GE-23, No 4, July 1985.

Lawden M.J. and Pearce D., "Making the VICAR system portable,"

J.B.I.S. 33, 369-376, 1980

175

LISTING 1 - AN IMAGE COPYING ROUTINE

PROCEDURE HELP=*

PARM (IN,OUT) TYPE=(STRING,80)

PARM SIZE TYPF_INTEGER COUNT_,(0,4) DEFAI_T=--

LOCAL COMMAND TYPF_(ST_ING, 130) INITIAL="DCL ACOPY "

LOCAL SIZIN TYPF.=(STRING,130)

LOCAL NEWSIZ TYPE=INTEGER

LOCAL I TYPF_INTEGER INITIAL=I

BODY

IF ($COUNT(SIZE) <) 0)

LET SIZIN--" SIZE-"

LOOP

IF (I > $COUNT(SIZE)) BREAK

LET NEWSIF;,SIZE(I)

LET SIZIN="&SIZIN" // "&NEWSIZ"

IF (I <> 4)

LET SIZIN="&SIZIN" // ","

END-IF

LET I=I+l

ENg-LOOP

LET COMMAND="&COMMAND" // "&SIZIN"

END-IF

DCL ACOPY :=-P: [VICLIB. PROGRAMS]ACOP¥. EIE

&COMMAND IN="&IN" OUT="&OUT"

RND-.PROC

.TITLE

A PROC to copy one image to another.

.help

©

This PROC was produced as a programming example of memory

176

._apping i_ages into a process'e own virtual address space.

However perplexing the above_ay sound, it is a siaple

program to use, with only the three parameters.

ACOPY IN="FRED" OUT="JIM" SIZF_(I, I,256,256)

This will copy the first 256 samples of the first 256 lines

from image FRED to i_age JIM.

177

s

LISTING 2 - THR LINK PROCEDURE

PROCEDURE LINK HELP=*

PARM FILENAME TYPE-(STRING, IO0)

PARM (DEBUG, MAP, CROSS) +

TYPE= (STRING, 3) VALIDffi-("YES", "NO") DEFAULT="NO"

LOCAL MAPFILE TYPF_FILE INITIAL=-- COUNT=O..I

LOCAL DCLCOM TYPE=(STRING, 132) INITIALf"LINK"

BODY

IF (MAP ffi"NO") LET DCLCOM = "&DCLCOM" // "/NOM_P"

IF (MAP = "YES") LET DCLCOM = "&DCLCOM" // "/MAP"

IF (DEBUG = "YES") LET DCLCOM = "&DCLCOM" // "/DEBUG"

IF (CROSS = "YES") LET DCLCOM = "&DCLCOM" // "/CROSS"

WRITE "COMMAND IS &DCLCOM"

DCL _DCLCOM &FILENAME,TAE$BISHOP..[ISER.OPT/OPTIONS

IF ($SFI < O)

WRITE "Error in linking &FILENAME"

ELSE

WRITE "&FILENAME correctly linked"

END-IF

END-PROC

.title

•HELP

LINK programs wlth TAE.

This PROC can be used to LINK program modules (object modules

output by any VAX compiler) together with the TAE kernel to

produce executable programs which will run under the TAE command

language•

.END

178

